UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING

LESSON PLAN

Discipline:	Semester: 3RD	Name of the Teaching faculty: MONALISHA SWAIN
Mechanical		
Subject:	No of Days/ Week	Semester from Date: 15. 09 . 2022 To Date: 22.12.2022
Thermal	class alloted: 4	No of weeks: 15
Engineering-I		
(Th-4)		
Week	Class	Topics
1 st	1 st	Introduction
	2 nd	1. Thermodynamic concept & Terminology
		1.1 Thermodynamic Systems (closed, open, isolated) 1.2
		Thermodynamic properties of a system (pressure, volume,
		temperature, entropy, enthalpy, Internal energy and units of
		measurement). 1.3 Intensive and extensive properties.
	3 rd	1.4 Define thermodynamic processes, path, cycle, state, path
		function, point function.
	4 th	1.5 Thermodynamic Equilibrium. 1.6 Quasi-static Process.
2 nd	1 st	1. 7 Conceptual explanation of energy and its sources 1.8 Work
		, heat and comparison between the two.
	2 nd	1.9 Mechanical Equivalent of Heat. 1.10Work transfer,
		Displacement work
	3 rd	3. Properties Processes of perfect gas
		3.1 Laws of perfect gas: Boyle's law, Charle's law, Avogadro's
		law,
	4 th	General gas equation, characteristic gas constant
		With numericals
3 rd	1 st	Universal gas constant. 3.2 Explain specific heat of gas (Cp and
		Cv) 3.3 Relation between Cp & Cv. 3.4 Enthalpy of a gas
		With numericals
	2 nd	Dalton's law of partial pressure, Guy lussac law
	3 rd	2. Laws of Thermodynamics
		2.1 State & explain Zeroth law of thermodynamics. 2.2 State &
	41-	explain First law of thermodynamics
	4 th	3.5 Work done during a non- flow process. 3.6 Application of
		first law of thermodynamics to various non flow process
. #h	. at	(Isothermal, Isobaric,)
4 th	1 st	Application of first law of thermodynamics to various non flow
	and	process(Isentropic and polytrophic process)
	2 nd	Application of first law of thermodynamics to various non flow
	a rd	process(polytrophic process)
	3 rd	Numerical problems on above processes
	4 th	3.7 Free expansion
5 th	1 st	3.7 Throttling process
	2 nd	2. Laws of Thermodynamics

		2.3 Limitations of First law of thermodynamics
	3 rd	2.4Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
	4 th	2.4Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
6 th	1 st	Problems on SFEE
	2 nd	Problems on SFEE
	3 rd	2.4 Second law of thermodynamics (Claucius& Kelvin Plank
		statements).
	4 th	2.4 Second law of thermodynamics (Claucius& Kelvin Plank
		statements).
7 th	1 st	Application of second law in heat engine, its efficiency with
		numericals
	2 nd	Application of second law in heat engine, its efficiency with
		numericals
	3 rd	Application of second law in heat pump, itsefficiency, COP with
		numericals
	4 th	Application of second law in heat pump, itsefficiency, COP with
		numericals
8 th	1 st	Application of second law in refrigerator, itsefficiency, COP with
	and	numericals,
9 th	2 nd	Application of second law in refrigerator, itsefficiency, COP with
	ard	numericals,
	3 rd	Revision
	1 st	Internal assessment
9	2 nd	Internal assessment
	2	4. Internal combustion engine
	3 rd	4.1 Explain & classify I.C engine.4.2 Terminology of I.C Engine such as bore, dead centers, stroke
	3	volume, piston speed &RPM
	4 th	4.2 Terminology of I.C Engine such as bore, dead centers, stroke
	•	volume, piston speed &RPM
10 th	1 st	4.3 Explain the working principle of 2-stroke & 4- stroke engine
	-	C.I & S.I engine
	2 nd	4.3 Explain the working principle of 2-stroke & 4- stroke engine
		C.I & S.I engine
	3 rd	4.3 Explain the working principle of 2-stroke & 4- stroke engine
		C.I & S.I engine
	4 th	4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I
		engine.
11 th	1 st	5. Gas Power Cycle
		5.1 Carnot cycle
	2 nd	5.1 Carnot cycle
	3 rd	5.1 Carnot cycle with numericals
	4 th	5.2 Otto cycle
12 th	1 st	5.2 Otto cycle
	2 nd	5.2 Otto cycle with numericals

	3 rd	5.3 Diesel cycle
	4 th	5.3 Diesel cycle
13 th	1 st	5.3 Diesel cycle with numericals
	2 nd	5.4 Dual cycle
	3 rd	5.4 Dual cycle.
	4 th	5.4 Dual cycle with numericals
14 th	1 st	Comparison of all cycles
	2 nd	6. Fuels and Combustion
		6.1 Define Fuel. 6.2 Types of fuel.
	3 rd	6.3 Application of different types of fuel.
	4 th	6.4 Heating values of fuel.
15 th	1 st	6.5 Quality of I.C engine fuels Octane number, Cetane number.
	2 nd	6.5 Quality of I.C engine fuels Octane number, Cetane number.
	3 rd	Previous year question discussion
	4 th	Previous year question discussion