UTKALAMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA

LESSON PLAN (2022-23)

Discipline: Mechanical Engineering	Semester: 4th	Name of the Teaching Faculty: Er SISIR KUMAR DALAI		
Subject: Thermal Engineering-II (Th-4)	No of Days/Week Class Allotted	Semester starts From Date: 14.02.2023 to Date: 23.05.2023 No. Of Weeks: 15		
Week	Class/Day	Theory/Practical Topics		
1 st	1 st	1. Performance of I.C engine Introduction		
	2 nd	Define mechanical efficiency, Indicated thermal efficiency		
	3 rd	Relative Efficiency, brake thermal efficiency,		
	1 st	Overall efficiency Mean effective pressure & specific fuel consumption.		
2 nd	2 nd	Define air-fuel ratio & calorific value of fuel.		
	3rd	Work out problems to determine efficiencies & specific fuel consumption.		
	1 st	Solve Numerical		
	2 nd	Solve Numerical		
3 rd	3 rd	2. Air Compressor Explain functions of compressor & industrial use of compressor air		
4th	1 st	Classify air compressor		
	2 nd	principle of operation.		
	3 rd	Describe the parts and working principle of reciprocating Air compressor.		
	1 st	Explain the terminology of reciprocating compressor		
	2 nd	Terminology such as bore, stroke, pressure ratio free air delivered &Volumetric efficiency.		
5th	3 rd	Derive the work done of single stage compressor.		
	4 th	Derive the work done of single stage compressor without clearance		
	1 st	Derive the work done of single stage compressor with clearance		
6th	2 nd	Work done of Two stage compressor without clearance.		
	3 rd	Solve Numerical		
	4 th	Solve Numerical		
7th	1 st	3. Properties of Steam Difference between gas & vapours. Formation of steam.		
	2 nd	Formation of steam.		
	3 rd	Representation on P-V, T-S, H-S, & T-H diagram.		
	4 th	Definition & Properties of Steam.		
8 th	1 st	Use of steam table & mollier chart for finding unknown properties.		
	2 nd	Non flow & flow process of vapour.		
	3 rd	P-V, T-S & H-S, diagram.		

9 th	1 st	P-V, T-S & H-S, diagram.		
	2 nd	Determine the changes in properties		
	3 rd	Determine the changes in properties		
10 th	1 st	Solve Numerical		
	2 nd	Solve Numerical		
	3 rd	4. Steam Generator		
		Classification & types of Boiler.		
11 th	1 st	Important terms for Boiler.		
		Comparison between fire tube & Water tube Boiler.		
	2 nd	Description & working of common boilers (Cochran,		
		Lancashire, Babcock & Wilcox Boiler)		
	3 rd	Description & working of common boilers (Cochran,		
		Lancashire, Babcock & Wilcox Boiler)		
	4 th	Boiler Draught (Forced, induced & balanced)		
12 th	1 st	Boiler Draught (Forced, induced & balanced)		
	2 nd	Boiler mountings & accessories.		
	3 rd	Boiler mountings & accessories.		
	4 th	5. Steam Power Cycles		
	4"	Carnot cycle with vapour.		
	1 st	Derive work & efficiency of the cycle.		
	2 nd	Rankine cycle.		
13 th	Z	Representation in P-V, T-S & h-s diagram.		
	3 rd	Derive Work & Efficiency.		
	4 th	Effect of Various end conditions in Rankine cycle.		
	1 st	Reheat cycle & regenerative Cycle.		
	2 nd	Solve simple numerical on Carnot vapour Cycle &		
		Rankine Cycle.		
14 th	3 rd	Solve Numerical		
	4 th	6. Heat Transfer		
		Modes of Heat Transfer (Conduction, Convection,		
		Radiation).		
	1 st	Fourier law of heat conduction and thermal conductivity		
		(k). Newton's laws of cooling.		
	2 nd	Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's		
15 th		law) only statement, no derivation & no numerical		
		problem.		
	3 rd	Solve Numerical		
	4 th	Black body Radiation, Definition of Emissivity,		
		absorptivity, & transmissibility.		

SI No.	Reference Book	Author Name	Publisher Name
01	Thermal Engineering	R.S. Khurmi	S.Chand
02	Thermal Engineering	A.R.Basu	Dhanpat Rai
03	Thermal Engineering	A.S. Sarao	Satya Prakash
04	Engineering Thermodynamics	P.k.Nag	TMH
05	Thermal Engineering	Mahesh M Rathore	TMH