# UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA



# LESSON PLAN

# DEPARTMENT OF CHEMICAL ENGINEERING

## **LESSON PLAN**



SUBJECT CODE

: TH-2

NAME : Fluid Mechanics

BRANCH : CHEMICAL

SEMESTER :Diploma-III

CREDIT POINTS : 4

NUMBER OF MODULES : 4

CLASSES REQUIRED : 60

PRE-REQUISITE:To the use of solids, use/application and handling of fluids<br/>(e.g. both liquids and gases) is in wide spectrum of<br/>engineering practice. Fluid statics, fluid flow phenomena,<br/>flow measurement, fluid flow through pipe lines, fluidized<br/>bed etc. There are many units processes particularly in<br/>chemical, petrochemical, pharmaceutical etc.

## **MODULE-I**

FLUID STATICS: 1. Fluid and its classification 2. Properties of fluid and its units 3.Newton's law of viscosity, Newtonian & Non-Newtonian fluid 4. Hydrostatic equilibrium and pressure head 5. Fluid pressure measuring devices 6. Different types of manometers and its applications 7. Derivation of monomeric equation. 1.8 Equation of continuity.

### **Objectives:**

To introduce fundamental aspects of fluid flow behavior, its properties and understand stress-strain relationship in fluids, classify their behavior. To understand the various flow measuring devices. To use important concepts of continuity equation.

| SESSION NO | TOPICS TO BE COVERED                                           | PRIMARY REFERENCE<br>(BOOKS/NOTES) |  |  |  |
|------------|----------------------------------------------------------------|------------------------------------|--|--|--|
| 1          | Basic concept of Fluid                                         | T1, R1, R2                         |  |  |  |
| 2          | Classification of Fluids                                       | T1, R1, R2                         |  |  |  |
| 3          | Properties of fluid and its units                              | T1, R1, R2                         |  |  |  |
| 4          | Newton's law of viscosity, Newtonian & Non-<br>Newtonian fluid | T1, R1, R2                         |  |  |  |
| 5          | Hydrostatic equilibrium and pressure head                      | T1, R1, R2                         |  |  |  |
| 6          | Fluid pressure measuring devices                               | T1, R1, R2                         |  |  |  |
| 7          | Different types of manometers and its applications             | T1, R1, R2                         |  |  |  |
| 8          | Different types of manometers and its applications             | T1, R1, R2                         |  |  |  |
| 9          | Derivation of monomeric equation                               | T1, R1, R2                         |  |  |  |
| 10         | Solve simple problems on using monomeric equation              | T1, R1, R2                         |  |  |  |
| 11         | Equation of continuity                                         | T1, R1, R2                         |  |  |  |
| 12         | Solve simple problems on using continuity equation             | T1, R1, R2                         |  |  |  |

## **MODULE-II**

FLUID FLOW PHENOMENA: 1. Types of flow: laminar and turbulent flow, Reynolds's number, critical velocity 2. Mechanism of fluid flow in pipes, Reynolds' experiment 3. Bernoulli's theorem, pump work (solve simple problems) 4. Flow of incompressible fluids in pipe 5. Friction factor, roughness and estimate friction loss in pipes & coils, equivalent length 6. Fanning's equation (Solve simple problems) 7. Friction losses through sudden enlargement and contraction in pipes 8. Flow of fluids in non-circular conduits. 9. Water hammer.

## **Objectives:**

To analyze laminar and turbulent flows. Mechanism of fluid flow in pipes. To use important concepts of Bernoulli's equation & Fanning equation.

| SESSION NO | TOPICS TO BE COVERED                                                                            | PRIMARY REFERENCE |  |  |  |
|------------|-------------------------------------------------------------------------------------------------|-------------------|--|--|--|
|            |                                                                                                 | (BOOKS/NOTES)     |  |  |  |
| 1          | Types of flow: laminar and turbulent flow                                                       | T1, R1, R2        |  |  |  |
| 2          | Reynolds's number, critical velocity                                                            | T1, R1, R2        |  |  |  |
| 3          | Solve simple problems on using Reynolds's number                                                | T1, R1, R2        |  |  |  |
| 4          | Mechanism of fluid flow in pipes,                                                               | T1, R1, R2        |  |  |  |
| 5          | Reynolds' experiment                                                                            | T1, R1, R2        |  |  |  |
| 6          | Bernoulli's theorem, pump work                                                                  | T1, R1, R2        |  |  |  |
| 7          | Derivation of Bernoulli's theorem                                                               | T1, R1, R2        |  |  |  |
| 8          | Solve simple problems on using Bernoulli's theorem                                              | T1, R1, R2        |  |  |  |
| 9          | Solve simple problems on using Bernoulli's theorem                                              | T1, R1, R2        |  |  |  |
| 10         | Flow of incompressible fluids in pipe                                                           | T1, R1, R2        |  |  |  |
| 11         | Friction factor, roughness and estimate friction loss<br>in pipes & coils, equivalent<br>length | T1, R1, R2        |  |  |  |
| 12         | Fanning's equation                                                                              | T1, R1, R2        |  |  |  |
| 13         | Solve simple problems on using Fanning's equation                                               | T1, R1, R2        |  |  |  |
|            | Friction losses through sudden enlargement and                                                  | T1, R1, R2        |  |  |  |
| 14         | contraction in pipes                                                                            |                   |  |  |  |
| 15         | Flow of fluids in non-circular conduits.                                                        | T1, R1, R2        |  |  |  |
| 16         | Water hammer                                                                                    | T1, R1, R2        |  |  |  |

### **MODULE-III**

FLOW MEASUREMENT: 3.1 Working of flow measuring devices, advantages & disadvantages 3.2 Expression for flow measurement through orifice meter, venturi meter & Pitot tube 3.2 Working of Rota meter and its calibration 3.3 Simple problems on flow measurement.

#### **Objectives:**

To study the Fundamental concepts of flow measuring devices. Expression for flow measurement through orifice & venturi meter

| SESSION NO | TOPICS TO BE COVERED                                              | PRIMARY REFERENCE<br>(BOOKS/NOTES) |  |  |  |  |  |
|------------|-------------------------------------------------------------------|------------------------------------|--|--|--|--|--|
| 1          | Working of flow measuring devices, advantages & disadvantages     | T1, R1, R2                         |  |  |  |  |  |
| 2          | Construction and Working principle of orifice T1, R1, R2<br>meter |                                    |  |  |  |  |  |
| 3          | Expression for flow measurement through orifice meter,            | T1, R1, R2                         |  |  |  |  |  |
| 4          | Simple problems on flow measurement through orifice meter         | T1, R1, R2                         |  |  |  |  |  |
| 5          | Construction and Working principle of Venturi meter               | T1, R1, R2                         |  |  |  |  |  |
| 6          | Expression for flow measurement through Venturi meter             | T1, R1, R2                         |  |  |  |  |  |
| 7          | Simple problems on flow measurement through Venturi meter         | T1, R1, R2                         |  |  |  |  |  |
| 8          | Expression for flow measurement through Pitot tube                | T1, R1, R2                         |  |  |  |  |  |
| 9          | Simple problems on flow measurement through<br>Pitot tube         | T1, R1, R2                         |  |  |  |  |  |
| 10         | Working of Rota meter                                             | T1, R1, R2                         |  |  |  |  |  |
| 11         | Calibration of Rota meter                                         | T1, R1, R2                         |  |  |  |  |  |
| 12         | Simple problems on flow measurement                               | T1, R1, R2                         |  |  |  |  |  |

## **MODULE-IV**

PUMPS AND FITTINGS: 4.1 Concept of transportation of fluid by pipes and tubes 4.2 Different pipe fittings and its application 4.3 Different types of valves and their applications 4.4 Classification of pumps 4.5 Construction and working of reciprocating and centrifugal pumps 4.6 Performance characteristics of reciprocating and centrifugal pumps. 4.7 Cavitation, Net positive suction head, Air binding & priming of pump 4.8 Centrifugal pump troubles and remedies 4.9 Working of Piston pump, plunger pump, gear pump, diaphragm pump 4.10 Pumping device for gas: blower, compressor and vacuum devices

## **Objectives:**

To study the Fundamental concepts of transportation of fluid by pipes and tubes & its application. To understand the different types of valves and pumps.

| SESSION NO | TOPICS TO BE COVERED                                                | PRIMARY REFERENCE<br>(BOOKS/NOTES) |
|------------|---------------------------------------------------------------------|------------------------------------|
| 1          | Concept of transportation of fluid by pipes and tubes               | T1, R1, R2                         |
| 2          | Different pipe fittings and its application                         | T1, R1, R2                         |
| 3          | Different types of valves and their applications                    | T1, R1, R2                         |
| 4          | Classification of pumps                                             | T1, R1, R2                         |
| 5          | Construction and working of reciprocating                           | T1, R1, R2                         |
| 6          | Construction and working of centrifugal pumps                       | T1, R1, R2                         |
| 7          | Performance characteristics of reciprocating and centrifugal pumps. | T1, R1, R2                         |
| 8          | Cavitation, Net positive suction head,                              | T1, R1, R2                         |
| 9          | Air binding & priming of pump                                       | T1, R1, R2                         |
| 10         | Centrifugal pump troubles and remedies                              | T1, R1, R2                         |
| 11         | Working of Piston pump, plunger pump, gear pump, diaphragm pump     | T1, R1, R2                         |
| 12         | Pumping device for gas: blower, compressor<br>and vacuum devices    | T1, R1, R2                         |

## **MODULE-V**

FLUIDIZATION: 5.1 Pressure drop in porous medium 5.2 Concept of fluidization and types of fluidization 5.3 Minimum fluidization velocity 5.4 Fluidized bed pressure drop 5.5 Principle of pneumatic conveyance 5.6 Flow through packed bed.

## **Objectives:**

To study the Fundamental concepts of Fluidization, types of fluidization and Application.

| SESSION NO | TOPICS TO BE COVERED                    | PRIMARY REFERENCE<br>(BOOKS/NOTES) |
|------------|-----------------------------------------|------------------------------------|
| 1          | Concept of Fluidization and Application | T1, R1, R2                         |
| 2          | Types of fluidization                   | T1, R1, R2                         |
| 3          | Minimum fluidization velocity           | T1, R1, R2                         |
| 4          | Derive Minimum fluidization velocity    | T1, R1, R2                         |
| 5          | Pressure drop in porous medium          | T1, R1, R2                         |
| 6          | Fluidized bed pressure drop             | T1, R1, R2                         |
| 7          | Principle of pneumatic conveyance       | T1, R1, R2                         |
| 8          | Flow through packed bed.                | T1, R1, R2                         |

Course Delivery Plan

| WEEK   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
|        | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4  | 4  | 4  | 4  | 4  | 4  |
| MODULE | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3  | 4  | 4  | 4  | 5  | 5  |

# **BOOKS FOR REFERENCE:**

## **TEXT BOOKS**

T1: Unit operation I by K Gavane, Nirali Publication

## REFERENCE

R1: Unit operation of Chemical Engineering by Mc Cabe & J M Smith, Tata Mc Grawhill.

R2: Introduction to Chemical Engineering by Badgero and Banchero, Tata Mc Grawhil.

|             | Prepared by   | Approved by    |  |  |  |  |
|-------------|---------------|----------------|--|--|--|--|
| Signature   | Subasini Jena | Born.          |  |  |  |  |
| Name        | SUBASINI JENA | B.K GANTAYAT   |  |  |  |  |
| Designation | Lecturer      | HOD, Chemical. |  |  |  |  |