

LESSON PLAN

SESSION: 2023-2024

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SUBJECT CODE: TH.2

NAME OF THE SUBJECT: CONTROL SYSTEMS & COMPONENT

BRANCH: ELECTRONICS & TELECOMMUNICATION

SEMESTER: 6TH

NUMBER OF CLASSES ALLOTED PER WEEK: 4

TOTAL PERIODS ALLOTED TO THE SUBJECT ACCORDING

TO SCTEVT: 60

NAME OF THE FACULTY: KAMALA KANTA NATH

LESSON PLAN

SUBJECT CODE:	TH.2
NAME OF THE SUBJECT:	CONTROL SYSTEMS & COMPONENT
BRANCH:	ELECTRONICS & TELECOMMUNICATION ENGG.
SEMESTER:	DIPLOMA 4 TH SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	Lecture	Topic to be covered
1 st week	1 st	UNIT-1:Fundamental of Control System
		Introduction of control system and Classification of Control system
	2 nd	Open loop system & Closed loop system and its comparison. Effects of Feed
		back
	3 rd	Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)
	4 th	Servomechanism
	1 st	Regulators (Regulating systems)
2 nd week	2 nd	UNIT-2: Transfer Functions
		Transfer Function of a system & Impulse response,
	3 rd	Properties, Advantages & Disadvantages of Transfer Function
	4 th	Derivation of open loop transfer function and close loop transfer function
3rd week	1 st	Poles & Zeroes of transfer Function, Representation of poles & Zero on the s-
		plane
	2 nd	Simple problems of transfer function of network
	3 rd	UNIT-3 Control system Components & mathematical modelling of physical
		System
		Components of Control System
	4 th	Potentiometer, Synchros
4 th week	1 st	Diode modulator & demodulator
	2 nd	Dc motors speed control by Armature control and Field control method
	3 rd	AC Servomotors control operation
	4 th	Modelling of Electrical Systems, R, L, C, Analogous systems

LESSON PLAN

SUBJECT CODE:	TH.2
NAME OF THE SUBJECT:	CONTROL SYSTEMS & COMPONENT
BRANCH:	ELECTRONICS & TELECOMMUNICATION ENGG.
SEMESTER:	DIPLOMA 4 TH SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	Lecture	Topic to be covered	
5 th week	1 st	Examples on modelling of Mechanical system to Electrical circuit	
	2 nd	UNIT-4 Block Diagram & Signal Flow Graphs(SFG)	
		Definition of Basic Elements of a Block Diagram, Canonical Form of Closed loop Systems	
	3 rd	Rules for Block diagram Reduction	
	4 th	Procedure for of Reduction of Block Diagram, Simple Problem for equivalent transfer	
		function	
	5 th	Examples of Block Diagram Reduction	
6 th week	1 st	Examples of Block Diagram Reduction	
	2 nd	Basic Definition in SFG & properties	
	3 rd	Mason's Gain formula, Steps for solving Signal flow Graph	
	4 th	Simple problems in Signal flow graph for network	
	5 th	Examples of SFG	
7 th week	1 st	Examples of SFG	
	2 nd	UNIT-5 Time Domain Analysis of Control Systems	
		Definition of Time, Stability, steady-state response, accuracy, transient accuracy, In-	
		sensitivity and robustness.	
	3 rd	System Time Response	
	4 th	Analysis of Steady State Error	
8 th week	1 st	Steady state Error Step signal	
	2 nd	Steady state Error Ramp signal	
	3 rd	Steady state Error Parabolic signal	
	4 th	Parameters of first order system & second-order systems	

LESSON PLAN

SUBJECT CODE:	TH.2
NAME OF THE SUBJECT:	CONTROL SYSTEMS & COMPONENT
BRANCH:	ELECTRONICS & TELECOMMUNICATION ENGG.
SEMESTER:	DIPLOMA 4 TH SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	Lecture	Topic to be covered
9 th week 1 st		Parameters of second-order systems
	2 nd	Derivation of time response Specification (Delay time, Rise time)
	3 rd	Derivation of time response Specification (Peak time, Setting time, Peak over shoot)
		UNIT-6 Feedback Characteristics of Control Systems
	4 th	Effect of parameter variation in Open loop System & Closed loop Systems
10 th week	1 st	Introduction to Basic control Action& Basic modes of feedback control: proportional,
		integral and derivative
	2 nd	Effect of feedback on overall gain, Stability
	3 rd	Realisation of Controllers(P, PI) with OPAMP
	4 th	Realisation of Controllers(PD,PID) with OPAMP
	5 th	UNIT-7 Stability concept& Root locus Method
		Effect of location of poles on stability
11 th week	1 st	Routh Hurwitz stability criterion.
	2 nd	Examples on Routh Hurwitz stability criterion.
	3 rd	Steps for Root locus method
	4 th	Examples on Root locus method
	5 th	Examples on Root locus method
10th 1	1 st	UNIT-8 Frequency-response analysis&Bode Plot
12 th week		Frequencyresponse, Relationship between time & frequency response, Methods of
		Frequency response
	2 nd	Polar plots & steps for polar plot
	3 rd	Examples on polar plot
	4 th	Examples on polar plot

LESSON PLAN

SUBJECT CODE:	TH.2
NAME OF THE SUBJECT:	CONTROL SYSTEMS & COMPONENT
BRANCH:	ELECTRONICS & TELECOMMUNICATION ENGG.
SEMESTER:	DIPLOMA 4 TH SEM
PERIODS PER WEEK:	4 (16/01/2024 to 26/04/2024)

Week/Date	Lecture	Topic to be covered
13 th week	1 st	Bodes plot & steps for Bode plots
	2^{nd}	Examples on Bode plot
	3 rd	Examples on Bode plot
	4 th	Stability in frequency domain, Gain Margin& Phase margin
	5 th	Nyquist plots. Nyquist stability criterion
14th week	1 st	Examples on Nyquist plots
	2^{nd}	
	3 rd	UNIT-9 State variable Analysis
		Concepts of state, state variable, state model
	4 th	state models for linear continuous time functions
15 th Week	1 st	Examples on state models
	2 nd	VST